Recall Base B of a topology $]$

$$
\begin{aligned}
& * J=\{U A: A \subset B\} \\
& * \forall x \in G \in J \quad \exists B \in B \quad x \in B \subset G
\end{aligned}
$$

Local base U_{x} at $x \in X$
\forall ubhd N of $x, \exists v \in U_{x}, x \in U \subset N$
second countable II $^{\prime}$
First countable C_{I}
Separable if \exists countable dense set D

$$
\forall G \in J, \quad G \cap D \neq \phi
$$

known.

$$
C_{I I} \Rightarrow C_{I}
$$

$C_{I I} \Rightarrow$ Separable pick $x_{j} \in B_{j} \in B, D=\left\{x_{j}: j \in \mathbb{N}\right\}$
Example of $\mathbb{R}^{n},\left\{B\left(q, \frac{1}{n}\right): q \in \mathbb{Q}^{n}\right\}$
From this example, apparently, if X is G and has a countable dense set D, we may have a countable base.
But, it is not so.

Proposition. Separable \& metric $\Rightarrow G_{I I}$
We have metric, thus
$\left\{B\left(x, \frac{1}{n}\right): 1 \leq n \in \mathbb{N}\right\}$ countable at x.
We also have a countable $D, \bar{D}=X$
Naturally, take

$$
B=\left\{B\left(q, \frac{1}{n}\right): 1 \leq n \in \mathbb{N}, q \in D\right\}
$$

Qu why is it a base?
Need to prove either one.
(1) $\forall G \in], G=U A$ for some $A \subset \mathbb{B}$
(2) $\forall x \in G \in J, \exists n \in \mathbb{N}, q \in D, x \in B\left(q, \frac{1}{n}\right) \subset G$

Take any $x \in G \in J$, so $x \in B\left(x, \frac{1}{n}\right) \subset G$
By $\bar{D}=X$, take $q \in B\left(x, \frac{1}{2 n}\right) \cap D$
then $x \in B\left(q, \frac{1}{2 n}\right) \subset B\left(x, \frac{1}{n}\right) \subset G$
Hence B is a countable base
Note. Replace $B\left(q, \frac{1}{n}\right)$ by $U_{q, n}$ where
$U_{q}=\left\{U_{q, n}: n \in \mathbb{N}\right\}$ is a countable local have
We do not have Δ-inequality to get

$$
U_{q, 2 n} \notin U_{x, n} \subset G
$$

Counter-example $C_{I} \&$ separable $\nRightarrow C_{\underline{I}}$
Lower -limit topology on \mathbb{R}, generated by $[a, b)$
Let B be any base for the topology
Tits element $\bigcup_{\alpha \in I}\left[a_{\alpha}, b_{\alpha}\right)$,
Take any $x \in \mathbb{R}$ and its nohd $[x, x+1)$, As B is a base, $\exists B_{x} \in B$ such that

$$
x \in B_{4} \subset[x, x+1)
$$

observe $a_{\alpha}^{\prime} s$ of $B x$

$$
\begin{aligned}
& x \in B_{x} \Rightarrow \inf a_{\alpha} \leqslant x \\
& B_{x} \subset[x, x+1) \Rightarrow \inf a_{\alpha} \geqslant x
\end{aligned}
$$

Thus, $x \longmapsto B_{x}: \mathbb{R} \longrightarrow B$ is one-one

$$
\text { i.e., } x \neq y \Rightarrow B_{x} \neq B_{y}
$$

Hence B must be uncountable.

Given topological spaces $\left(X, J_{X}\right),\left(Y, J_{Y}\right)$ and a mapping $f: X \longrightarrow Y$
Qu. How would you define continuity?
Naturally, modify from known situation
For metric spaces, f is continuous at $x_{0} \in X$ if $\forall \varepsilon>0 \exists \delta>0$ such that

$$
d_{x}\left(x, x_{0}\right)<\delta \Longrightarrow d_{y}\left(f(x), f\left(x_{0}\right)\right)<\varepsilon
$$

Rewrite into set language

$$
\begin{aligned}
& \quad x \in B_{x}\left(x_{0}, \delta\right) \Longrightarrow f(x) \in B_{y}\left(f\left(x_{0}\right), \varepsilon\right) \\
& \text { i.e. } \quad f\left(B_{x}\left(x_{0}, \delta\right)\right) \subset B_{Y}\left(f\left(x_{0}\right), \varepsilon\right)
\end{aligned}
$$

Now, without metric, there is no balls, nor $\varepsilon-\delta$ Definition $f: X \longrightarrow Y$ is continuous at x_{0}. if
\forall nbhd V of $f\left(x_{0}\right), \exists$ nbhd V of x_{0}
such that $f(U) \subset V$
Equivalently,
(1) $\forall V \in]_{4}$ with $\left.f\left(x_{0}\right) \in V, \exists U \in\right]_{x}, x_{0} \in U, f(U) \subset V$
(2) ${ }^{4}$ By $B x$
(1) \Rightarrow (2) Take any $f\left(x_{0}\right) \in V \in B_{Y} \subset J_{Y}$

By (1) $\exists \underbrace{W \in J_{x}, x_{0} \in W}, f(W) \subset V$ $x_{0} \in U \subset W$ for some $U \in B_{x}$
(2) \Rightarrow (1) similar.

$$
f(v) \subset f(w) \subset V
$$

Qu. What about continuity on the whole X ? Obvious method: add $\forall x \in X \quad \forall V \in J_{Y}$ with $f(x) \in V$

$$
\underbrace{\exists U \in J_{x}, \underbrace{x \in U, f(v) \subset V}_{x \in U \in-f^{-1}(V)}}_{f^{-1}(V) \text { is a nbhd } \eta x} \varlimsup_{x \in f^{-1}(V)}
$$

Equivalently rewritten as

$$
\forall V \in J_{Y} \quad \underbrace{\forall x \in f^{\prime}(V), f^{\prime}(V) \text { is a nhl }{ }^{x} x}_{f^{-1}(V) \text { is an open set in } X}
$$

Definition. $f: X \rightarrow Y$ is continuous (everywhere)

$$
\text { if } \forall V \in J_{Y} \quad f^{\prime}(V) \in J_{X}
$$

Recall the local version
$f: X \rightarrow Y$ is continuous at $x_{0} \in X$ if $\forall V \in J_{Y}$ with $f\left(x_{0}\right) \in V, \exists U \in J_{X}$ such that $x_{0} \in U$ and $f(U) \subset V$

